96 research outputs found

    Event--related desynchronization in diffusively coupled oscillator models

    Get PDF
    We seek explanation for the neurophysiological phenomenon of event related desynchronization (ERD) by using models of diffusively coupled nonlinear oscillators. We demonstrate that when the strength of the event is sufficient, ERD is found to emerge and the accomplishment of a behavioral/functional task is determined by the nature of the desynchronized state. We illustrate the phenomenon for the case of limit cycle and chaotic systems. We numerically demonstrate the occurrence of ERD and provide analytical explanation. We also discuss possible applications of the observed phenomenon in real physical systems other than the brain.Comment: Accepted in Physical Review Letter

    Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography

    Full text link
    Using far field optical lithography, a single quantum dot is positioned within a pillar microcavity with a 50 nm accuracy. The lithography is performed in-situ at 10 K while measuring the quantum dot emission. Deterministic spectral and spatial matching of the cavity-dot system is achieved in a single step process and evidenced by the observation of strong Purcell effect. Deterministic coupling of two quantum dots to the same optical mode is achieved, a milestone for quantum computing.Comment: Modified version: new title, additional experimental data in figure

    Influence of s,p-d and s-p exchange couplings on exciton splitting in (Zn,Mn)O

    Full text link
    This work presents results of near-band gap magnetooptical studies on (Zn,Mn)O epitaxial layers. We observe excitonic transitions in reflectivity and photoluminescence, that shift towards higher energies when the Mn concentration increases and split nonlinearly under the magnetic field. Excitonic shifts are determined by the s,p-d exchange coupling to magnetic ions, by the electron-hole s-p exchange, and the spin-orbit interactions. A quantitative description of the magnetoreflectivity findings indicates that the free excitons A and B are associated with the Gamma_7 and Gamma_9 valence bands, respectively, the order reversed as compared to wurtzite GaN. Furthermore, our results show that the magnitude of the giant exciton splittings, specific to dilute magnetic semiconductors, is unusual: the magnetoreflectivity data is described by an effective exchange energy N_0(beta-alpha)=+0.2+/-0.1 eV, what points to small and positive N_0 beta. It is shown that both the increase of the gap with x and the small positive value of the exchange energy N_0 beta corroborate recent theory describing the exchange splitting of the valence band in a non-perturbative way, suitable for the case of a strong p-d hybridization.Comment: 8 pages, 8 figure

    Effect of pure dephasing on the Jaynes-Cummings nonlinearities

    Get PDF
    We study the effect of pure dephasing on the strong-coupling between a quantum dot and the single mode of a microcavity in the nonlinear regime. We show that the photoluminescence spectrum of the system has a robust tendency to display triplet structures, instead of the expected Jaynes-Cummings pairs of doublets at the incommensurate frequencies ±(n±n1)\pm(\sqrt{n}\pm\sqrt{n-1}) for integer nn. We show that current experimental works may already manifest signatures of single photon nonlinearities.Comment: v2: 4 Pages,3 figures. New figure 2 and some changes in the text. New author adde

    Properties of a single photon generated by a solid-state emitter: effects of pure dephasing

    Full text link
    We investigate the properties of a single photon generated by a solid-state emitter subject to strong pure dephasing. We employ a model in which all the elements of the system, including the propagating fields, are treated quantum mechanically. We analytically derive the density matrix of the emitted photon, which contains full information about the photon, such as its pulse profile, power spectrum, and purity. We visualize these analytical results using realistic parameters and reveal the conditions for maximizing the purity of generated photons.Comment: 25pages(one column), 10 figure

    Non-resonant dot-cavity coupling and its applications in resonant quantum dot spectroscopy

    Full text link
    We present experimental investigations on the non-resonant dot-cavity coupling of a single quantum dot inside a micro-pillar where the dot has been resonantly excited in the s-shell, thereby avoiding the generation of additional charges in the QD and its surrounding. As a direct proof of the pure single dot-cavity system, strong photon anti-bunching is consistently observed in the autocorrelation functions of the QD and the mode emission, as well as in the cross-correlation function between the dot and mode signals. Strong Stokes and anti-Stokes-like emission is observed for energetic QD-mode detunings of up to ~100 times the QD linewidth. Furthermore, we demonstrate that non-resonant dot-cavity coupling can be utilized to directly monitor and study relevant QD s-shell properties like fine-structure splittings, emission saturation and power broadening, as well as photon statistics with negligible background contributions. Our results open a new perspective on the understanding and implementation of dot-cavity systems for single-photon sources, single and multiple quantum dot lasers, semiconductor cavity quantum electrodynamics, and their implementation, e.g. in quantum information technology.Comment: 17 pages, 4 figure

    Scaling Effects and Spatio-Temporal Multilevel Dynamics in Epileptic Seizures

    Get PDF
    Epileptic seizures are one of the most well-known dysfunctions of the nervous system. During a seizure, a highly synchronized behavior of neural activity is observed that can cause symptoms ranging from mild sensual malfunctions to the complete loss of body control. In this paper, we aim to contribute towards a better understanding of the dynamical systems phenomena that cause seizures. Based on data analysis and modelling, seizure dynamics can be identified to possess multiple spatial scales and on each spatial scale also multiple time scales. At each scale, we reach several novel insights. On the smallest spatial scale we consider single model neurons and investigate early-warning signs of spiking. This introduces the theory of critical transitions to excitable systems. For clusters of neurons (or neuronal regions) we use patient data and find oscillatory behavior and new scaling laws near the seizure onset. These scalings lead to substantiate the conjecture obtained from mean-field models that a Hopf bifurcation could be involved near seizure onset. On the largest spatial scale we introduce a measure based on phase-locking intervals and wavelets into seizure modelling. It is used to resolve synchronization between different regions in the brain and identifies time-shifted scaling laws at different wavelet scales. We also compare our wavelet-based multiscale approach with maximum linear cross-correlation and mean-phase coherence measures
    corecore